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We investigate a solid-on-solid model on two-dimensional substrates as a natural extension of
the Wolf-Villain model for molecular-beam epitaxial growth [D.E. Wolf and J. Villain, Europhys.
Lett. 13, 389 (1990)]. In this extended Wolf-Villain model, freshly landed atoms relax into the local
energy minima calculated within a next-nearest-neighbor approximation. We calculate the surface
width, the correlation function, and the averaged step height and show the surface morphologies. In
the transient regime, the model can be described by the nonlinear continuum equation proposed by
Lai and Das Sarma [Z.W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991)]. At relatively
smaller lateral size L. ~ 35 and earlier growth time ¢. ~ 1800 than in the original model, it shows
a crossover behavior to the Edwards-Wilkinson class, i.e., logarithmic kinetic roughening.

PACS number(s): 05.40.+j, 68.55.Bd, 61.50.Cj, 05.70.Ln

I. INTRODUCTION

Recently, there has been much interest in epitaxially
grown surfaces. In epitaxial growth such as molecular-
beam epitaxy (MBE), incident particles with deposition
flux R are deposited on substrates with temperature T
and diffuse under chemical-bonding environment. To
study the kinetic roughening of growing surfaces at low
T (or high R), various growth models and continuum
growth equations have been investigated numerically and
analytically [1]. In particular, much attention has been
paid to the universality class of growth models and con-
tinuum equations, which is mainly determined by the
values of growth exponents governing the surface fluc-
tuations. It has been expected that for an initially flat
surface, the root-mean-square value of the surface fluc-
tuation or the surface width W scales as

W(L,t) = Laf(t/Lz)a (1)

where L is the lateral size of the substrate, ¢ is the growth
time, a is the roughness exponent describing the satu-
rated surface, z is the dynamic exponent, and the scaling
function f(z) ~ z? (with the growth exponent 8 = a/z)
for ¢ < 1 and f(z) — const for z > 1 [2]. Thus the
surface width W grows as W (t) ~ tf for 1 < t < L? and
W(L) ~ L™ for t > L*.

Various attempts using growth models may be clas-
sified into real MBE growth simulations and kinetic
growth simulations. In a real MBE growth simulation,
any surface atom can migrate by an Arrhenius-type hop-
ping rate throughout the simulation. In a kinetic growth
simulation, freshly landed atoms diffuse according to a
given growth rule and become incorporated into the bulk.
Considering some real MBE growth simulations such as
the work by Wilby, Vvedensky, and Zangwill [3], one
would expect that kinetic growth simulations give cor-
rect pictures of surface roughening in epitaxial growth,
despite their ideality. In this work, we focus our attention
on kinetic growth simulations.

Pioneering works initiating the study of growth mod-
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els for MBE growth were carried out by Wolf and Vil-
lain [4] and Das Sarma and Tamborenea [5]. In the
Wolf-Villain (WV) (or Das Sarma-Tamborenea) model,
freshly landed atoms relax into sites with the largest
coordination numbers (or neighboring kink sites). On
one-dimensional (1D) substrates, Wolf and Villain and
Das Sarma and Tamborenea obtained growth exponents
B and a close to analytic values of the Herring-Mullins
(HM) [6] linear equation. But numerical simulations on
two-dimensional substrates [7,8] showed that in the tran-
sient regime, the WV model can be described by the non-
linear equation proposed by Lai and Das Sarma [9] and
that the model may show a crossover to the Edwards-
Wilkinson (EW) class [10]. The measurement of the sur-
face diffusion current [11] also supported the EW behav-
ior in the asymptotic regime. To clarify these crossovers,
Smilauer and Kotrla [12] carried out extensive simula-
tions on 1D and 2D substrates. On 1D substrates, they
observed a crossover from the HM to the Lai-Das Sarma
(LD) behavior. But they did not draw a definite con-
clusion for the crossover to the EW class on 1D and 2D
substrates.

If a more extensive simulation is not available, an in-
direct way of dealing with these crossovers may be to ex-
tend the original model without any important changes
and to make it possible to observe the crossovers in
smaller length and time scales than in the original model.
In a previous work [13], we investigated a natural exten-
sion of the WV model where the binding energy calcu-
lation includes next-nearest-neighbor (NNN) interaction
as well as nearest-neighbor (NN) interaction. As is well
known from the theory of critical phenomena, further
neighbor interactions would not lead to a change of the
main results with NN interactions, especially for the uni-
versality class. Beyond expectation, we could observe
the crossover behaviors on 1D substrates in much smaller
length and time scales and in a clearer manner than in
the original WV model.

In this work we investigate this extended WV model
on 2D substrates of real situations in experiments, which
shows the LD behavior in a transient regime and the
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EW behavior in an asymptotic regime, i.e., logarithmic
kinetic roughening. In Sec. II we briefly summarize the
previously obtained results that are relevant to this work.
In Sec. III we calculate the surface width, the correla-
tion function, and the averaged step height and show the
surface morphologies. Section IV is devoted to a brief
summary.

II. SOLID-ON-SOLID MODELS
FOR EPITAXIAL GROWTH

Ideal MBE growth can be regarded as a conservative
growth; there are no desorption and surface overhangs
leading to bulk defects. For a conservative growth, the
most general continuum equation up to fourth order (see
Ref. [14] for a brief review) can be written as

Oh

o _ . 2
En V-j+n (2)

=vV%h — 1, V*h + M VE(VA)2 + A,V - (VR)® + 1,

where h(x,t) is the height of the surface ind = d' + 1
dimension (d' is the substrate dimension), j(x,t) the sur-
face current, and 7 an uncorrelated Gaussian noise. The
(Vh)? term of the Kardar-Parisi-Zhang equation [15] is
not allowed in the continuum equation for a conservative
growth.

The vV2h term in Eq. (2), which was introduced by
Edwards and Wilkinson [10], produces a = (3 —d)/2 and
B = (3—d)/4 and is known to describe a growing surface
in the presence of gravitation. The —v; V*h term intro-
duced by Herring and Mullins [6] gives a = (5 — d)/2
and 8 = (5 —d)/8. a and 3 consistent with the analytic
values were obtained in larger curvature models [16] in
which freshly deposited atoms relax into sites with larger
curvatures. The A; V2(Vh)? term solved by Lai and Das
Sarma [9] yields a = (5 —d)/3 and 8 = (5 — d)/(7 + d).
(In this paper, the A; VZ(Vh)? term is referred to as LD
behavior.] As a model showing the LD behavior, they
introduced a model where an atom moves to a neighbor-
ing kink site and breaks the bond to find another kink
with smaller step height. Recently, another model be-
longing to the same universality class was proposed. In
the model, a modification of the restricted solid-on-solid
(RSOS) model [17], atoms can move to the nearest sites
satisfying the RSOS condition instead of being rejected
[18].

The characteristics of another nonlinear A,V - (Vh)3
term introduced by Lai and Das Sarma have not been as
clear as the others. A dimensional analysis yielded crit-
ical exponents a = (5 — d)/4 and B8 = (5 — d)/(6 + 2d)
[9]. In the work by Das Sarma and Ghaisas [7,19] and
in the extended WV model on 1D substrates [13], the
values of @ and (8 mentioned above were obtained in
transient regimes before crossovers to the EW class. On
the other hand, one can regard the A,V - (Vh)3 term
as a higher-order correction of the EW term, consider-
ing a Hamiltonian in a generalized Langevin equation
H~ [ d¥z /1T + (Vh)?2 describing surface tension. More
recently, a renormalization group (RG) analysis [20] and
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a direct integration [21] showed that the A;V-(Vh)3 term
alone yields o and 3 consistent with the EW class. In
view of the results of the RG analysis and the direct inte-
gration, we consider that the previous numerical results
consistent with the dimensional analysis are simply ar-
tifacts owing to a very slow crossover to the EW class.
In fact, we have not observed such a behavior in the ex-
tended WV model on 2D substrates of real situation in
experiments.

Compared with the solid-on-solid models mentioned
above, the WV model has a simpler growth rule. Unex-
pectedly, it shows complex crossover behaviors that are
not fully convincing; previous studies mentioned in the
Introduction suggest that the WV -model is governed by

% =vV2h — 1, V*h + A V2(VA)? + 1. 3)

In a previous work [13] we investigated the extended WV
model on 1D substrates, which was found to be governed
by Eq. (3). We showed the crossover behaviors of a and
[ from the calculation of the surface width; the extended
WYV model shows the LD behavior (@« = 1 and z = 3) in
a transient regime and crosses over to the EW behav-
ior (¢ = 1/2 and z = 2) in an asymptotic regime. We
also confirmed the EW behavior in the asymptotic regime
from the measurement of the surface diffusion current.
We note that the crossover from the HM (a = 3/2 and
z = 4) to the LD behavior is suppressed in the extended
WV model ind’ = 1 as in the WV model in d’ = 2. In the
extended WV model, an arbitrary small NNN interaction
leads to the absence of a > 1 implying unstable growth
of the surface. Thus we consider that the extended WV
model with a NNN interaction is more physically reliable
than the WV model with only a NN interaction from the
viewpoint of describing real growth processes.

III. NUMERICAL RESULTS
ON 2D SUBSTRATES

In this section we present the numerical results on 2D
substrates of size L x L (d’ = 2). In our numerical simu-
lation, an atom is added to the top of a randomly chosen
column. If the binding energy is the largest at the chosen
site, the atom stays; otherwise it moves to the empty site
of the NN column offering the strongest binding. In the
simulation, we used the periodic boundary condition.

In the extended WV model, the values of the bind-
ing energies E can be expressed as Ny E; + N3 E5, where
the number of NN’s, the coordination number, is N; =
1,...,5 and that of NNN’s is N, = N; —1,...,N; + 7.
(See Fig. 1.) Here E; is the binding energy between NN’s
and E; is that between NNN’s. The hierarchy of binding
energies is independent of the value of E3 in d’ = 1, while
it is not in d' = 2. If By > 7TE,, larger N; corresponds
to larger E. Otherwise a site with smaller IV; can have
larger E. To fulfill a natural extension of the WV model,
we set £y = 8 and E; = 1. At the end of this section,
we also deal with the opposite case of E; < TE, with the
values of F; = 2 and E; = 1.
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FIG. 1. Nearest neighbors (hatched spheres) and next
nearest neighbors (dotted spheres) of a given site (the solid
sphere) on a two-dimensional substrate.

From the results in d’ = 1, we expect that in a transient
regime the model shows the LD behavior (6 = 1/5 and
a = 2/3) and that in an asymptotic regime it shows the
EW behavior (logarithmic kinetic roughening). First, we
calculate the surface width with the statistical average
on 150 — 600 samples. As seen in Fig. 2, we obtained
B = 0.210.001 at small time scales, which is in excellent
agreement with 1/5. As shown in the inset, W2 behaves
as Int for ¢ > 2000. Figure 3 shows the log-log plot of
W vs L where a = 0.675 + 0.006, close to 2/3, at small
length scales and W2 ~ InL for L > 40. Therefore,
the extended WV model shows the LD behavior in the
transient regime and a crossover to the EW class in the
asymptotic regime. We estimate the crossover time ¢, ~
1800 and the crossover length L. ~ 35. The crossover
time t. in the extended WV model is much smaller than
that (~ 20000) in the original WV model [11]. Since it
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FIG. 2. The log-log plots of W vs t for L = 20, 40, 60,
and 100. The slope of the guide dotted line is 1/5. The inset
shows W? ~ Int in the asymptotic regime where L = 100.
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FIG. 3. The log-log plot of W vs L. The slope of the
guide dotted line is 2/3. The inset shows W? ~ InL in the
asymptotic regime.

takes a very long time to arrive at a saturated regime, the
crossover length L. has not been estimated for the WV
model in other works. We have successfully obtained the
same results as in the WV model but in much smaller
time and length scales and in a clearer manner.

Second, we calculate the correlation function to
confirm our results obtained from the surface width.
The height-difference correlation function is defined as
G(r,t) = ([h(x + r,t) — h(x,t)]?), where () denotes a
spatial average. In an isotropic growth, we can write
G(r,t) = G(r,t), where G(r,t) scales as

G(r,t) = rz"g(r/tl/z), (4)

with the scaling function g(z) — const for z < 1 and
g(x) ~ z72* for z > 1. We obtained the LD behavior in
the transient regime by scaling G(r, t) with the exponents
of the LD term. Figure 4 shows a very good data collapse
of the scaling plots of G(r,t)/r?* vs r/t'/* with a = 2/3
and z = 10/3, which confirms the LD behavior in the
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FIG. 4. Scaling plots of G(r,t) for t = 25, 50, 100, 200,
400, and 800 with L = 100. We have a = 2/3 and z = 10/3.
Statistical averages were taken over 150 samples.
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In G

FIG. 5. The log-log plot of G vs t with L = 100, where
¢t = 25, 50, 100, 200, 400, 800, 1600, 2000, 2400, 3600, and
4800. The slope of the guide dotted line is 2/5. Inset (a) shows
G(r,t) ~ Int in the asymptotic regime. Inset (b) shows the
log-log plot of the correlation length £ vs t. The slopes of the
guide dotted lines correspond to 1/z.

transient regime. We also obtained the log-log plot of
G vs t from the saturated values of G(r,t), as shown in
Fig. 5. We obtained 8 = 0.201 4 0.001 in the transient
regime and G ~ Int for ¢ > 1600, as shown in inset
(a), which is consistent with the results obtained from
the surface width. Inset (b) shows the log-log plot of
the correlation length & ~ t!/? against t. We obtained ¢
for several values of t as the value of r at which G(r,t)
begins to saturate. As seen in inset (b), the dynamic
exponent z changes from 10/3 to 2. This confirms that
the logarithmic behaviors such as W2 ~ Int and G ~ Int
in the asymptotic regime are not artifacts owing to the
saturation by finite-size effects.

Third, we calculate the averaged square of the step
height G(1,t) = ((Vh)?). In d' = 1, both the extended
WYV and the WV models show initial power-law increases
of G(1,t) [12,22,23]. In d' = 2, G(1,t) grows as Int at
early times, as shown in Fig. 6, in the extended WV
model while it increases as a power law in the WV model
[12]. The absence of an initial power-law increase of
G(1,t) in d' = 2 implies that the value of o measured
from the surface width is the same as that from the cor-
relation function. As shown in Fig. 6, G(1,t) saturates
to a constant value. However, our data are not sufficient
to draw a definite conclusion whether the constant satu-
rated value is independent of L [22] or it has a correction
of order 1/L [24].

Finally, we show the surface morphologies in both
the transient regime and the asymptotic regime. Fig-
ure 7 shows the surface morphologies at t = 200 (10%),
where the extended WV model shows the LD (EW)
behavior. As seen in the figure, the surface shows a
short-wavelength fluctuation in the transient regime [Fig.
7(a)] and a long-wavelength fluctuation in the asymptotic
regime [Fig. 7(b)].

Here we discuss a point relevant to our results. We
have chosen F; = 8 and F; = 1 throughout the simu-
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FIG. 6. Semilogarithmic plots of G(1,t) vs t for L = 20
(—), 40 (—), 80 (O), and 120 (O). In this time scale,
the data for L = 40, 80, and 120 are overcrowded. Statistical
averages were taken over 150 — 300 samples.

lation. As mentioned at the beginning of this section, if
E, < 7E,, a deposited atom can move to the site with
smaller coordination number but larger binding energy.
Thus atoms can move in different ways to the original
WYV model. To see this effect on the surface roughness
we calculated the surface width with E; =2 and E; =1
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FIG. 7. Surface morphologies at (a) ¢t = 200 and (b)
t =10°.
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but obtained the same results for a and § as with £; = 8
and E; = 1. From this result, we consider that growth
models, such as the WV and the extended WV models
where deposited particles move to local energy minima,
are governed by the EW class in asymptotic regimes, re-
gardless of the details of growth rules.

IV. SUMMARY

We have carried out a kinetic growth simulation for
molecular-beam epitaxy with a solid-on-solid model with
next-nearest-neighbor interactions, which is a natural
extension of the Wolf-Villain (WV) model. On two-
dimensional substrates, we have calculated the surface
width, the correlation function, and the averaged step
height. We have also shown the surface morpholo-
gies in both the transient and the asymptotic regimes.
The extended WV model shows the Lai-Das Sarma [the
A1VZ(Vh)? term| behavior in the transient regime and
the Edwards-Wilkinson behavior, i.e., a logarithmic ki-
netic roughening in the asymptotic regime. We have ob-

served the same crossover behavior as in the original WV
model but in much smaller length and time scales and in
a clearer manner.

On one-dimensional substrates, the behavior of an-
other nonlinear A,V - (Vh)3 term was reported from the
calculations of the surface width and the correlation func-
tion [13]. We consider that this result on one-dimensional
substrates is an artifact owing to a very slow crossover to
the Edwards-Wilkinson class, in view of the present re-
sults on two-dimensional substrates, which are consistent
with the recent works of Das Sarma and Kotlyar [20] and
Kim and Das Sarma [21].
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